Overview
Integration details
Class | Package | Local | Serializable | JS support | Downloads | Version |
---|---|---|---|---|---|---|
ChatSambaNovaCloud | langchain-sambanova | ❌ | ❌ | ❌ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ |
Setup
To access ChatSambaNovaCloud models you will need to create a SambaNovaCloud account, get an API key, install thelangchain_sambanova
integration package.
Copy
pip install langchain-sambanova
Credentials
Get an API Key from cloud.sambanova.ai and add it to your environment variables:Copy
export SAMBANOVA_API_KEY="your-api-key-here"
Copy
import getpass
import os
if not os.getenv("SAMBANOVA_API_KEY"):
os.environ["SAMBANOVA_API_KEY"] = getpass.getpass(
"Enter your SambaNova Cloud API key: "
)
Copy
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
The LangChain SambaNovaCloud integration lives in thelangchain_sambanova
package:
Copy
%pip install -qU langchain-sambanova
Instantiation
Now we can instantiate our model object and generate chat completions:Copy
from langchain_sambanova import ChatSambaNovaCloud
llm = ChatSambaNovaCloud(
model="Meta-Llama-3.3-70B-Instruct",
max_tokens=1024,
temperature=0.7,
top_p=0.01,
)
Invocation
Copy
messages = [
(
"system",
"You are a helpful assistant that translates English to French. "
"Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
Copy
AIMessage(content="J'adore la programmation.", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 7, 'completion_tokens': 8, 'completion_tokens_after_first_per_sec': 195.0204119588971, 'completion_tokens_after_first_per_sec_first_ten': 618.3422770734173, 'completion_tokens_per_sec': 53.25837044790076, 'end_time': 1731535338.1864908, 'is_last_response': True, 'prompt_tokens': 55, 'start_time': 1731535338.0133238, 'time_to_first_token': 0.13727331161499023, 'total_latency': 0.15021112986973353, 'total_tokens': 63, 'total_tokens_per_sec': 419.4096672772185}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731535338}, id='f04b7c2c-bc46-47e0-9c6b-19a002e8f390')
Copy
print(ai_msg.content)
Copy
J'adore la programmation.
Streaming
Copy
system = "You are a helpful assistant with pirate accent."
human = "I want to learn more about this animal: {animal}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
chain = prompt | llm
for chunk in chain.stream({"animal": "owl"}):
print(chunk.content, end="", flush=True)
Copy
Yer lookin' fer some knowledge about owls, eh? Alright then, matey, settle yerself down with a pint o' grog and listen close.
Owls be a fascinatin' lot, with their big round eyes and silent wings. They be birds o' prey, which means they hunt other creatures fer food. There be over 220 species o' owls, rangin' in size from the tiny Elf Owl (which be smaller than a parrot) to the Great Grey Owl (which be as big as a small eagle).
One o' the most interestin' things about owls be their eyes. They be huge, with some species havin' eyes that be as big as their brains! This lets 'em see in the dark, which be perfect fer nocturnal huntin'. They also have special feathers on their faces that help 'em hear better, and their ears be specially designed to pinpoint sounds.
Owls be known fer their silent flight, which be due to the special shape o' their wings. They be able to fly without makin' a sound, which be perfect fer sneakin' up on prey. They also be very agile, with some species able to fly through tight spaces and make sharp turns.
Some o' the most common species o' owls include:
* Barn Owl: A medium-sized owl with a heart-shaped face and a screechin' call.
* Tawny Owl: A large owl with a distinctive hootin' call and a reddish-brown plumage.
* Great Horned Owl: A big owl with ear tufts and a deep hootin' call.
* Snowy Owl: A white owl with a round face and a soft, hootin' call.
Owls be found all over the world, in a variety o' habitats, from forests to deserts. They be an important part o' many ecosystems, helpin' to keep populations o' small mammals and birds under control.
So there ye have it, matey! Owls be amazin' creatures, with their big eyes, silent wings, and sharp talons. Now go forth and spread the word about these fascinatin' birds!
Async
Copy
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"what is the capital of {country}?",
)
]
)
chain = prompt | llm
await chain.ainvoke({"country": "France"})
Copy
AIMessage(content='The capital of France is Paris.', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 1, 'completion_tokens': 7, 'completion_tokens_after_first_per_sec': 442.126212227688, 'completion_tokens_after_first_per_sec_first_ten': 0, 'completion_tokens_per_sec': 46.28540439646366, 'end_time': 1731535343.0321083, 'is_last_response': True, 'prompt_tokens': 42, 'start_time': 1731535342.8808727, 'time_to_first_token': 0.137664794921875, 'total_latency': 0.15123558044433594, 'total_tokens': 49, 'total_tokens_per_sec': 323.99783077524563}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731535342}, id='c4b8c714-df38-4206-9aa8-fc8231f7275a')
Async Streaming
Copy
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"in less than {num_words} words explain me {topic} ",
)
]
)
chain = prompt | llm
async for chunk in chain.astream({"num_words": 30, "topic": "quantum computers"}):
print(chunk.content, end="", flush=True)
Copy
Quantum computers use quantum bits (qubits) to process info, leveraging superposition and entanglement to perform calculations exponentially faster than classical computers for certain complex problems.
Tool calling
Copy
from datetime import datetime
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
@tool
def get_time(kind: str = "both") -> str:
"""Returns current date, current time or both.
Args:
kind(str): date, time or both
Returns:
str: current date, current time or both
"""
if kind == "date":
date = datetime.now().strftime("%m/%d/%Y")
return f"Current date: {date}"
elif kind == "time":
time = datetime.now().strftime("%H:%M:%S")
return f"Current time: {time}"
else:
date = datetime.now().strftime("%m/%d/%Y")
time = datetime.now().strftime("%H:%M:%S")
return f"Current date: {date}, Current time: {time}"
tools = [get_time]
def invoke_tools(tool_calls, messages):
available_functions = {tool.name: tool for tool in tools}
for tool_call in tool_calls:
selected_tool = available_functions[tool_call["name"]]
tool_output = selected_tool.invoke(tool_call["args"])
print(f"Tool output: {tool_output}")
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
return messages
Copy
llm_with_tools = llm.bind_tools(tools=tools)
messages = [
HumanMessage(
content="I need to schedule a meeting for two weeks from today. "
"Can you tell me the exact date of the meeting?"
)
]
Copy
response = llm_with_tools.invoke(messages)
while len(response.tool_calls) > 0:
print(f"Intermediate model response: {response.tool_calls}")
messages.append(response)
messages = invoke_tools(response.tool_calls, messages)
response = llm_with_tools.invoke(messages)
print(f"final response: {response.content}")
Copy
Intermediate model response: [{'name': 'get_time', 'args': {'kind': 'date'}, 'id': 'call_7352ce7a18e24a7c9d', 'type': 'tool_call'}]
Tool output: Current date: 11/13/2024
final response: The meeting should be scheduled for two weeks from November 13th, 2024.
Structured Outputs
Copy
from pydantic import BaseModel, Field
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
Copy
Joke(setup='Why did the cat join a band?', punchline='Because it wanted to be the purr-cussionist!')
Input Image
Copy
multimodal_llm = ChatSambaNovaCloud(
model="Llama-3.2-11B-Vision-Instruct",
max_tokens=1024,
temperature=0.7,
top_p=0.01,
)
Copy
import base64
import httpx
image_url = (
"https://images.pexels.com/photos/147411/italy-mountains-dawn-daybreak-147411.jpeg"
)
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image in 1 sentence"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
response = multimodal_llm.invoke([message])
print(response.content)
Copy
The weather in this image is a serene and peaceful atmosphere, with a blue sky and white clouds, suggesting a pleasant day with mild temperatures and gentle breezes.