Skip to main content
Alpha Notice: These docs cover the v1-alpha release. Content is incomplete and subject to change.For the latest stable version, see the current LangGraph Python or LangGraph JavaScript docs.
This quickstart demonstrates how to build a calculator agent using the LangGraph Graph API or the Functional API.
For conceptual information, see Graph API overview and Functional API overview.
  • Use the Graph API
  • Use the Functional API

1. Define tools and model

In this example, we’ll use the Claude 3.7 Sonnet model and define tools for addition, multiplication, and division.
import { ChatAnthropic } from "@langchain/anthropic";
import { tool } from "@langchain/core/tools";
import * as z from "zod";

const llm = new ChatAnthropic({
  model: "claude-3-7-sonnet-latest",
  temperature: 0,
});

// Define tools
const add = tool(({ a, b }) => a + b, {
  name: "add",
  description: "Add two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

const multiply = tool(({ a, b }) => a * b, {
  name: "multiply",
  description: "Multiply two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

const divide = tool(({ a, b }) => a / b, {
  name: "divide",
  description: "Divide two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

// Augment the LLM with tools
const toolsByName = {
  [add.name]: add,
  [multiply.name]: multiply,
  [divide.name]: divide,
};
const tools = Object.values(toolsByName);
const llmWithTools = llm.bindTools(tools);

2. Define state

The graph’s state is used to store the messages and the number of LLM calls.
import { StateGraph, START, END } from "@langchain/langgraph";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import { type BaseMessage } from "@langchain/core/messages";

const MessagesState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
  llmCalls: z.number().optional(),
});

3. Define model node

The model node is used to call the LLM and decide whether to call a tool or not.
import { SystemMessage } from "@langchain/core/messages";
async function llmCall(state: z.infer<typeof MessagesState>) {
  return {
    messages: await llmWithTools.invoke([
      new SystemMessage(
        "You are a helpful assistant tasked with performing arithmetic on a set of inputs."
      ),
      ...state.messages,
    ]),
    llmCalls: (state.llmCalls ?? 0) + 1,
  };
}

4. Define tool node

The tool node is used to call the tools and return the results.
import { isAIMessage, ToolMessage } from "@langchain/core/messages";
async function toolNode(state: z.infer<typeof MessagesState>) {
  const lastMessage = state.messages.at(-1);

  if (lastMessage == null || !isAIMessage(lastMessage)) {
    return { messages: [] };
  }

  const result: ToolMessage[] = [];
  for (const toolCall of lastMessage.tool_calls ?? []) {
    const tool = toolsByName[toolCall.name];
    const observation = await tool.invoke(toolCall);
    result.push(observation);
  }

  return { messages: result };
}

5. Define end logic

The conditional edge function is used to route to the tool node or end based upon whether the LLM made a tool call.
async function shouldContinue(state: z.infer<typeof MessagesState>) {
  const lastMessage = state.messages.at(-1);
  if (lastMessage == null || !isAIMessage(lastMessage)) return END;

  // If the LLM makes a tool call, then perform an action
  if (lastMessage.tool_calls?.length) {
    return "toolNode";
  }

  // Otherwise, we stop (reply to the user)
  return END;
}

6. Build and compile the agent

The agent is built using the StateGraph class and compiled using the compile method.
const agent = new StateGraph(MessagesState)
  .addNode("llmCall", llmCall)
  .addNode("toolNode", toolNode)
  .addEdge(START, "llmCall")
  .addConditionalEdges("llmCall", shouldContinue, ["toolNode", END])
  .addEdge("toolNode", "llmCall")
  .compile();

// Invoke
import { HumanMessage } from "@langchain/core/messages";
const result = await agent.invoke({
  messages: [new HumanMessage("Add 3 and 4.")],
});

for (const message of result.messages) {
  console.log(`[${message.getType()}]: ${message.text}`);
}
Congratulations! You’ve built your first agent using the LangGraph Graph API.
// Step 1: define tools and model
import { ChatAnthropic } from "@langchain/anthropic";
import { tool } from "@langchain/core/tools";
import * as z from "zod";

const llm = new ChatAnthropic({
  model: "claude-3-7-sonnet-latest",
  temperature: 0,
});

// Define tools
const add = tool(({ a, b }) => a + b, {
  name: "add",
  description: "Add two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

const multiply = tool(({ a, b }) => a * b, {
  name: "multiply",
  description: "Multiply two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

const divide = tool(({ a, b }) => a / b, {
  name: "divide",
  description: "Divide two numbers",
  schema: z.object({
    a: z.number().describe("First number"),
    b: z.number().describe("Second number"),
  }),
});

// Augment the LLM with tools
const toolsByName = {
  [add.name]: add,
  [multiply.name]: multiply,
  [divide.name]: divide,
};
const tools = Object.values(toolsByName);
const llmWithTools = llm.bindTools(tools);

// Step 2: Define state
import { StateGraph, START, END } from "@langchain/langgraph";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import { type BaseMessage } from "@langchain/core/messages";

const MessagesState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
  llmCalls: z.number().optional(),
});

// Step 3: Define model node
import { SystemMessage } from "@langchain/core/messages";
async function llmCall(state: z.infer<typeof MessagesState>) {
  return {
    messages: await llmWithTools.invoke([
      new SystemMessage(
        "You are a helpful assistant tasked with performing arithmetic on a set of inputs."
      ),
      ...state.messages,
    ]),
    llmCalls: (state.llmCalls ?? 0) + 1,
  };
}

// Step 4: Define tool node
import { isAIMessage, ToolMessage } from "@langchain/core/messages";
async function toolNode(state: z.infer<typeof MessagesState>) {
  const lastMessage = state.messages.at(-1);

  if (lastMessage == null || !isAIMessage(lastMessage)) {
    return { messages: [] };
  }

  const result: ToolMessage[] = [];
  for (const toolCall of lastMessage.tool_calls ?? []) {
    const tool = toolsByName[toolCall.name];
    const observation = await tool.invoke(toolCall);
    result.push(observation);
  }

  return { messages: result };
}

// Step 5: Define logic to determine whether to end
async function shouldContinue(state: z.infer<typeof MessagesState>) {
  const lastMessage = state.messages.at(-1);
  if (lastMessage == null || !isAIMessage(lastMessage)) return END;

  // If the LLM makes a tool call, then perform an action
  if (lastMessage.tool_calls?.length) {
    return "toolNode";
  }

  // Otherwise, we stop (reply to the user)
  return END;
}

// Step 6: Build and compile the agent
const agent = new StateGraph(MessagesState)
  .addNode("llmCall", llmCall)
  .addNode("toolNode", toolNode)
  .addEdge(START, "llmCall")
  .addConditionalEdges("llmCall", shouldContinue, ["toolNode", END])
  .addEdge("toolNode", "llmCall")
  .compile();

// Invoke
import { HumanMessage } from "@langchain/core/messages";
const result = await agent.invoke({
  messages: [new HumanMessage("Add 3 and 4.")],
});

for (const message of result.messages) {
  console.log(`[${message.getType()}]: ${message.text}`);
}
I